0 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
利用伊辛模型相变点附近的反常扩散研究方法,探索相互作用势为V(ξ)=-ξ2/2+ξ4/4的一维双势阱晶格在热传导转变行为的两个无量钢温度特征转变点T=0.05和T=0.1附近序参量的输运行为。研究发现,与其他典型温度只出现弹道输运和正常输运不同的是,T=0.05会呈现额外的亚扩散输运,T=0.1则有一个超扩散输运区域。进一步分析表明,这些序参量的反常输运与系统中热输运和动量输运紧密相关。
Abstract:Using the method of anomalous diffusion near the critical point of the Ising model, we investigate the heat conduction transport behavior in a one-dimensional lattice with a double-well potential which interaction potential is V(ξ)=-ξ2/2+ξ4/4 during thermal conduction transition at two dimensionless temperature characteristic points T=0.05和T=0.1.It is found that, unlike other typical temperatures where only ballistic transport and normal transport occur, an additional subdiffusion transport appears at T=0.05;while there is a superdiffusion transport region at T=0.1.Further analysis shows that these anomalous transports of order parameters are closely related to thermal and momentum transports in the system.
[1] LEPRI S,LIVI R,POLITI A.Thermal conduction in classical low-dimensional lattices[J].Physics Reports,2003,377(1):1-80.
[2] DHAR A.Heat transport in low-dimensional systems[J].Advances in Physics,2008,57(5):457-537.
[3] ZHONG Y,ZHANG Y,WANG J,et al.Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions[J].Physical Review E,2012,85(6):060 102.
[4] CHEN S D,ZHANG Y,WANG J,et al.Breakdown of the power-law decay prediction of the heat current correlation in one-dimensional momentum conserving lattices[EB/OL].(2012-04-26)[2024-01-13].http://arxiv.org/abs/1204.5933.
[5] SAVIN A V,KOSEVICH Y A.Thermal conductivity of molecular chains with asymmetric potentials of pair interactions[J].Physical Review E,2014,89(3):032 102.
[6] DAS S G,DHAR A,NARAYAN O.Heat conduction in the α-β fermi-pasta-ulam chain[J].Journal of Statistical Physics,2014,154(1):204-213.
[7] WANG L,HU B,LI B W.Validity of Fourier’s law in one-dimensional momentum-conserving lattices with asymmetric interparticle interactions[J].Physical Review E,2013,88(5):052 112.
[8] CHEN S D,ZHANG Y,WANG J,et al.Why asymmetric interparticle interaction can result in convergent heat conductivity[EB/OL].(2013-09-27)[2024-01-13].http://arxiv.org/abs/1309.7146 .
[9] XIONG D,WANG J,ZHANG Y,et al.Nonuniversal heat conduction of one-dimensional lattices[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2012,85(2 pt 1):020 102.
[10] XIONG D X,ZHANG Y,ZHAO H.Heat transport enhanced by optical phonons in one-dimensional anharmonic lattices with alternating bonds[J].Physical Review E,2013,88(5):052 128.
[11] XIONG D X,ZHANG Y,ZHAO H.Temperature dependence of heat conduction in the Fermi-Pasta-Ulam-β lattice with next-nearest-neighbor coupling[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2014,90(2):022 117.
[12] LEE-DADSWELL G R,NICKEL B G,GRAY C G.Thermal conductivity and bulk viscosity in quartic oscillator chains[J].Physical Review E,2005,72(3):031 202.
[13] LEE-DADSWELL G R,NICKEL B G,GRAY C G.Detailed examination of transport coefficients in cubic-plus-quartic oscillator chains[J].Journal of Statistical Physics,2008,132(1):1-33.
[14] LEE-DADSWELL G R.Predicting and identifying finite-size effects in current spectra of one-dimensional oscillator chains[J].Physical Review E,2015,91:012 138.
[15] POPKOV V,SCHADSCHNEIDER A,SCHMIDT J,et al.Fibonacci family of dynamical universality classes[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(41):12 645-12 650.
[16] HURTADO P I,GARRIDO P L.A violation of universality in anomalous Fourier’s law[J].Scientific Reports,2016,6:38 823.
[17] CHANG C W,OKAWA D,GARCIA H,et al.Breakdown of Fourier’s law in nanotube thermal conductors[J].Physical Review Letters,2008,101(7):075 903.
[18] GIARDINA C,LIVI R,POLITI A,et al.Finite thermal conductivity in 1D lattices[J].Physical Review Letters,2000,84(10):2 144-2 147.
[19] GENDELMAN O V,SAVIN A V.Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction[J].Physical Review Letters,2000,84(11):2 381-2 384.
[20] LI Y Y,LIU S,LI N B,et al.1D momentum-conserving systems:the conundrum of anomalous versus normal heat transport[J].New Journal of Physics,2015,17(4):043 064.
[21] DAS S G,DHAR A.Role of conserved quantities in normal heat transport in one dimenison[EB/OL].(2014-11-19)[2024-01-13].http://arxiv.org/abs/1411.5247.
[22] SPOHN H.Fluctuating hydrodynamics for a chain of nonlinearly coupled rotators[EB/OL].(2014-11-14)[2024-01-13].http://arxiv.org/abs/1411.3907.
[23] LI H B.Heat conduction in one-dimensional lattice with double-well interaction[J].International Journal of Modern Physics B,2011,25(6):823-832.
[24] ROY D.Crossover from Fermi-Pasta-Ulam to normal diffusive behavior in heat conduction through open anharmonic lattices[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2012,86(4 Pt 1):041 102.
[25] XIONG D X.Crossover between different universality classes:scaling for thermal transport in one dimension[J].EPL (Europhysics Letters),2016,113(1):14 002.
[26] XIONG D X.Underlying mechanisms for normal heat transport in one-dimensional anharmonic oscillator systems with a double-well interparticle interaction[J].Journal of Statistical Mechanics:Theory and Experiment,2016(4):043 208.
[27] ZHONG W,PANJA D,BARKEMA G T,et al.Generalized Langevin equation formulation for anomalous diffusion in the Ising model at the critical temperature[J].Physical Review E,2018,98:012 124.
[28] ZHONG W,BARKEMA G T,PANJA D,et al.Critical dynamical exponent of the two-dimensional scalar ?4 model with local moves[J].Physical Review E,2018,98(6):062 128.
[29] ZHONG W,PANJA D,BARKEMA G T.Approximate dynamical eigenmodes of the Ising model with local spin-exchange moves[J].Physical Review E,2019,100:012 132.
[30] ZHONG W,BARKEMA G T,PANJA D.Super slowing down in the bond-diluted Ising model[J].Physical Review E,2020,102(2):022 132.
[31] SCHNEIDER T,STOLL E.Observation of cluster waves and their lifetime[J].Physical Review Letters,1975,35(5):296-299.
[32] RUIZ A,ALONSO D,PLENIO M B,et al.Tuning heat transport in trapped-ion chains across a structural phase transition[J].Physical Review B,2014,89(21):214 305.
[33] LEE W,KOVA?I? G,CAI D.Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(9):3 237-3 241.
[34] CHEN S D,ZHANG Y,WANG J,et al.Diffusion of heat,energy,momentum,and mass in one-dimensional systems[J].Physical Review E,2013,87(3):032 153.
基本信息:
DOI:10.19724/j.cnki.jmju.2025.02.004
中图分类号:O411
引用信息:
[1]熊大兴,王忠瀚,钟蔚.一维双势阱晶格热传导转变点附近序参量的反常输运[J].闽江学院学报,2025,46(02):24-33.DOI:10.19724/j.cnki.jmju.2025.02.004.
基金信息:
国家自然科学基金项目(12275116); 福建省自然科学基金项目(2021J02051); 闽江学院引进人才科研启动项目(MJY21035)